Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano
1.
FEBS Open Bio ; 12:160, 2022.
Artigo em Inglês | EMBASE | ID: covidwho-1976656

RESUMO

The virus responsible for the current COVID -19 pandemic is SARS-CoV-2, which has caused >400 million infections and >5 million deaths (as of February 2022). Despite vaccination efforts, there is still an urgent need to develop strategies to control infection and treat patients. One of the proteins bound to the viral membrane is the spike (S) protein, which consists of two subunits: S1, which contains a receptor-binding domain (RBD) responsible for binding to the host cell receptor, and S2, which facilitates membrane fusion between the viral and host cell membranes, previously published in: Jackson CB et al. (2018) Nat Rev Mol Cell Biol 23, 3-20. Thus, this protein is primarily responsible for the ability of the virus to enter host cells, making it one of the most promising therapeutic targets of coronavirus, previously published in: Cao L et al. (2020) Science 6515, 426- 431. The aim of this work was to design and produce antiviral proteins that could prevent the interaction between the two proteins and thus block infection by binding to the RBD region and blocking its interaction with the host receptor, angiotensin converting enzyme-2 (ACE2) protein. First, several antiviral proteins were computationally designed using the Rosetta program based on the interactions between ACE2 and the RBD. Next, six molecular dynamics simulations (MD) of 1 ls of three candidates were performed to test their interaction with the RBD. This was followed by experimental validation after expression and purification of the three candidates. The secondary structure and thermostability of these proteins were tested by far-UV circular dichroism spectropolarimetry. Surface plasmon resonance was used to evaluate the affinity of each candidate for RBD. Neutralization assays were performed to investigate the neutralization ability of the proteins. The experimental results show that one of the developed proteins is a promising therapeutic approach that will be further improved in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA